Brain Serotonin Signaling Does Not Determine Sexual Preference in Male Mice
نویسندگان
چکیده
It was reported recently that male mice lacking brain serotonin (5-HT) lose their preference for females (Liu et al., 2011, Nature, 472, 95-100), suggesting a role for 5-HT signaling in sexual preference. Regulation of sex preference by 5-HT lies outside of the well established roles in this behavior established for the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). Presently, mice with a null mutation in the gene for tryptophan hydroxylase 2 (TPH2), which are depleted of brain 5-HT, were tested for sexual preference. When presented with inanimate (urine scents from male or estrous female) or animate (male or female mouse in estrus) sexual stimuli, TPH2-/- males show a clear preference for female over male stimuli. When a TPH2-/- male is offered the simultaneous choice between an estrous female and a male mouse, no sexual preference is expressed. However, when confounding behaviors that are seen among 3 mice in the same cage are controlled, TPH2-/- mice, like their TPH2+/+ counterparts, express a clear preference for female mice. Female TPH2-/- mice are preferred by males over TPH2+/+ females but this does not lead to increased pregnancy success. In fact, if one or both partners in a mating pair are TPH2-/- in genotype, pregnancy success rates are significantly decreased. Finally, expression of the VNO-specific cation channel TRPC2 and of CNGA2 in the MOE of TPH2-/- mice is normal, consistent with behavioral findings that sexual preference of TPH2-/- males for females is intact. In conclusion, 5-HT signaling in brain does not determine sexual preference in male mice. The use of pharmacological agents that are non-selective for the 5-HT neuronal system and that have serious adverse effects may have contributed historically to the stance that 5-HT regulates sexual behavior, including sex partner preference.
منابع مشابه
Serotonin signaling in the brain of adult female mice is required for sexual preference.
A role for serotonin in male sexual preference was recently uncovered by our finding that male mutant mice lacking serotonin have lost sexual preference. Here we show that female mouse mutants lacking either central serotonergic neurons or serotonin prefer female over male genital odors when given a choice, and displayed increased female-female mounting when presented either with a choice of a ...
متن کاملBrain serotonin deficiency leads to social communication deficits in mice.
A deficit in brain serotonin is thought to be associated with deteriorated stress coping behaviour, affective disorders and exaggerated violence. We challenged this hypothesis in mice with a brain-specific serotonin depletion caused by a tryptophan hydroxylase 2 (TPH2) deficiency. We tested TPH2-deficient (Tph2(-/-)) animals in two social situations. As juveniles, Tph2(-/-) mice displayed reduc...
متن کاملChronic exposure to a predator or its scent does not inhibit male–male competition in male mice lacking brain serotonin
Although it is well-known that defective signaling of the 5-HT system in the brain and stressful stimuli can cause psychological disorders, their combined effects on male-male aggression and sexual attractiveness remain unknown. Our research aimed at examining such effects using tryptophan hydroxylase 2 (Tph2) knockout male mice vs. a rat- or rat scent-based chronic stress model. Tph2(+/+) and ...
متن کاملInteraction between Intestinal Microbiota and Serotonin Metabolism
Gut microbiota regulates the production of signaling molecules, such as serotonin or 5-Hydroxytryptamine: 5-HT in the host. Serotonin is a biogenic amine that acts as a neurotransmitter in the gut and brain. There is a perfect interaction between human gastrointestinal microbiota and the serotonin system. The gut microbiota plays an important role in the serotonin signaling pathways through the...
متن کامل5-HT2A Serotonin Receptor Density in Adult Male Rats’ Hippocampus after Morphine-based Conditioned Place Preference
Introduction: A close interaction exists between the brain opioid and serotonin (5-HT) neurotransmitter systems. Brain neurotransmitter 5-HT plays an important role in the regulation of reward-related processing. However, a few studies have investigated the potential role of 5-HT2A receptors in this behavior. Therefore, the aim of the present study was to assess the influence of...
متن کامل